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Abstract. If the structure of a complex fluid is characterized by a nanoscopic or mesoscopic length
scale comparable with the correlation length of critical fluctuations, a specific sharp crossover from
classical mean-field behaviour to Ising asymptotic behaviour is observed. In the region far away
from the critical point where the correlation length is still smaller than this structural length scale,
one can observe mean-field behaviour. Ultimately, in the nearest vicinity of the critical point,
the correlation length becomes dominant and one should expect Ising singular behaviour. Such a
crossover is observed in polymer solutions, where the structural length scale is controlled by the
molecular weight of polymer, and in aqueous salt solutions, where the range of Ising behaviour can
be tuned by the salt concentration. The structural length diverges at a tricritical point. Crossover to
mean-field tricriticality can be naturally incorporated into a universal scaling description of polymer
solutions.

It is commonly accepted that complex fluids, such as polymer and micellar solutions,
microemulsions and solutions of electrolytes asymptotically close to the appropriate critical
points exhibit the same universal behaviour as simple fluids. In other words, all fluids, simple
and complex, belong to the same universality class, namely that of the three-dimensional
Ising model [1]. Critical-point universality originates from the long-range nature of the
order-parameter fluctuations. Close enough to the critical point the correlation length of
critical fluctuations becomes so large that microscopic details of short-range intermolecular
interactions become unimportant. However, as the distance from the critical point increases,
one should expect a crossover to classical mean-field (van-der-Waals-like) behaviour. The
range of classical behaviour should increase with increase of the range of intermolecular
forces. Such an expectation is confirmed by a numerical study of the three-dimensional Ising
lattice with a variety of interaction ranges tuned by the coordination number [2]. However,
in ordinary fluids with short-range intermolecular forces, the crossover to classical critical
behaviour is never completed in the critical domain. The critical domain is characterized by
the parameter τ = (T − Tc)/T � 1, the reduced difference between the temperature T and
the critical temperature Tc. In practice, one can consider τ ≈ 10−2 or a few kelvins around an
ordinary critical temperature as the critical domain. In simple fluids at τ ≈ 10−2 the correlation
length is about 2–5 nm, which is much larger than the characteristic microscopic length scale
(of the order of a molecular size). The fluctuations become unimportant outside the critical
region only. In contrast, in complex fluids, one observes sometimes almost pure classical
behaviour in the critical domain [3, 4]. Thus, the range of Ising-like universal behaviour in
complex fluids can be so narrow that experimentally it is difficult to achieve. More typically,
the physical properties of complex fluids in the critical region exhibit some kind of intermediate
(crossover) non-universal behaviour rather than asymptotic behaviour [5–9]. The questions
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arise: (i) What can we learn about complex fluids from the shape of the crossover? (ii) What
physical features drive the crossover and control the crossover temperature τx?

A natural phenomenological approach to the crossover problem in complex fluids is
to assume that the critical behaviour in such systems is affected by a competition between
the correlation length, ξ , of the critical fluctuations and an additional length ξD associated
with a supramolecular structure or/and with long-range interparticle interactions. When the
correlation length dominates, the system enters the Ising critical regime. When the length ξD is
larger than ξ , the critical fluctuations are not important. The length ξD may be associated with
an additional (non-critical) order parameter and will diverge at a tricritical or a multicritical
point of some kind that emerges as a result of coupling between the order parameters. With
small logarithmic corrections, the tricritical behaviour is almost mean-field-like [10]. Thus,
if the system is close to the tricritical point, one should expect a crossover to mean-field
tricriticality.

A sensitive test of the shape of the crossover behaviour is obtained from analysis of the
effective exponent of the susceptibility χ , defined as γeff = −d log χ/d log τ , and from the
effective critical exponent of the order parameter ϕ defined as βeff = d log ϕ/d log τ . The
exponent γeff exhibits crossover from its classical value γ = 1 (τ � τx) to its Ising value
γ � 1.24 (τ � τx). Analogously, βeff changes from its classical value β = 0.5 to its Ising
value β � 0.325. Anisimov et al [7] have shown that the crossover behaviour in many complex
fluids can be quantitatively described by a crossover function based on the ‘renormalization
group matching’ theory [11, 12] that contains two independent parameters: a rescaled coupling
constant ū which reflects the strength and the range, ξ̄0, of molecular forces (ū ∼ ξ̄−4

0 [13]) and
a ‘cutoff’ inverse length, �, which in complex fluids is assumed to be inversely proportional
to the structural length ξD . The product of ū and of the ratio ξ̄0/ξD determines the so-called
Ginzburg number NG � 0.03(ūξ̄0/ξD)2 which serves as the crossover scale. Independently,
the difference (1 − ū) determines the shape of the crossover: the larger ū, the sharper the
crossover. If NG is small and (1 − ū) is small or negative, the crossover behaviour is both
pronounced and sharp. The crossover temperature τx can be defined as the inflection point of
γeff (τ ): in practice, τx � 10NG.

If is important to emphasize the physical difference between approaching mean-field
behaviour due to the long-range nature of the molecular forces (small ū, while ξ̄0/ξD is not
small) and that due to a small ratio ξ0/ξD (i.e. the ratio ξD/ξ̄0 is large, while ū is not necessarily
small). In both cases the Ginzburg number is small. The former case is the conventional
crossover to mean-field critical behaviour. Complete crossover of such a kind has been
observed in the three-dimensional Ising model [2, 13]. The latter case of large and eventually
diverging ξD may correspond to approaching a special kind of mean-field behaviour, namely
tricritical mean-field behaviour. A typical and conceptually well understood example is the
crossover to theta-point tricriticality in polymer solutions [14, 15]. Possibly, a mean-field-like
multicriticality determines the nature of crossover phenomena in ionic solutions as well [16].

This approach has been proved for high molecular weight polymers in low molecular
weight solvents. The structural length scale ξD in polymer solutions can be identified with
the radius of gyration. It has been shown by Melnichenko et al [8] that the susceptibility
of polystyrene solutions in deuterocyclohexane does exhibit a sharp crossover to mean-field
behaviour with τx corresponding to the temperature at which the correlation length becomes
equal to the radius of gyration. As the radius of gyration diverges in the infinite molecular
weight limit, the critical temperature approaches the theta temperature � and τx vanishes.
Povodyrev et al [14] have developed a crossover Flory model modified by fluctuations to
describe phase separation in polymer solutions. In the Flory model ξD ∼ N1/2 [17] with N

being the degree of polymerization. Thus the crossover temperature τx ∼ N−1/2.
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Figure 1. Universal scaled phase coexistence in polymer solutions: (a) plotted in a linear scale,
(b) plotted in a logarithmic scale. Symbols are the experimental data for 16 different systems with
a variety of polymer molecular weights [18–20]. The solid curve is predicted by the crossover
theory [15] based on a six-term Landau expansion renormalized by fluctuations.

A spectacular demonstration of scaling and crossover to tricriticality in polymer solutions
can be done without assumptions and restrictions implied by any particular equation of
state. In figure 1 the rescaled experimental phase co-existence data are presented in
linear (a) and logarithmic (b) scales for different polymer systems with various molecular
weights of polymers: polystyrene in methylcyclohexane, polystyrene in cyclohexane and
polymethylmethacrylate in 3-octanone obtained by Dobashi et al (nine samples with polymer
molecular weight from 104 to 7.2×105) [18], Nakata et al (two samples with polymer molecular
weights 2 × 105 and 1.6 × 106) [19], and Xia et al (five samples with polymer molecular
weights from 4.9 × 104 to 6 × 105) [20], respectively. The solid curve represents the universal
crossover description based on a six-term Landau expansion renormalized by fluctuations [15].
The universal description is formulated in terms of the scaling variable z = C|τ |/φc and the
scaling function y(z) = A(φ − φc)/B0φ

β
c , where φ is the volume fraction of polymer, φc the

critical volume fraction, C the asymptotic slope of the polymer-rich branch of the coexistence
curve, B0 the asymptotic critical amplitude according to φ − φc � ±B0|τ |β and the constant
A is defined as B0φ

β−1
c → A at φc → 0.

While polymer solutions demonstrate the crossover behaviour which is conceptually well
understood, another class of complex fluids, ionic fluids, remains a subject of controversy. In
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Figure 2. Crossover temperature τx and the crossover length scale ξD as a function of NaBr
concentration X. The solid curve represents an empirical power law τx = 0.3(X0 − X)0.8 with
X0 = 0.1652. The dashed curve represents a power law ξD ∼ (X0 − X)−1/2.

spite of remarkable progress in the theoretical investigations of various models representing
ionic systems [21–23] and impressive experimental achievements [24, 25], there is still no
clear picture of ionic criticality. Phase separation in most fluids containing ions is driven by
non-coulombic forces. This does not mean that ions play no role in the phenomenon, but it
means the phase separation can occur even in the absence of ions. Examples are vapour–liquid
separation of salty water or liquid–liquid separation of weakly dissociated organic solutes in
water. The latter is referred to as ‘solvophobic’ phase separation and expected in solvents of
high dielectric constant when coulombic forces are weak [24]. In aqueous solvophobic systems
hydrogen bonding may also play an important role in driving the phase separation and causing
more complex phase behaviour such as closed-loop phase diagrams and double critical points.
This, however, does not make the criticality different from that in other solvophobic systems
[26]. Results of experiments in ‘coulombic’ systems are ambiguous. While Narayanan and
Pitzer [6] observed a sharp crossover to mean field for solutions of tetra-n-butylammonium
picrate in low dielectric constant alcohols (the result was later confirmed by an explicit analysis
[7]), some other coulombic systems do not exhibit any pronounced tendency to mean-field
behaviour [27] or even show either mean-field [3, 4] or Ising [28, 29] behaviour in the same
system depending on the sample source. In this respect, a complete crossover to mean-field
critical behaviour recently observed in a typically solvophobic system, a ternary solution of
3-methylpyridine-water-sodium bromide [9], deserves special attention. This system exhibits
a closed-loop miscibility gap which is widening with increase of the salt concentration. At low
concentration of NaBr the susceptibility extracted from the light-scattering intensity exhibits
almost Ising behaviour; however, with increase of the salt concentration the crossover to mean-
field behaviour becomes more and more pronounced. Finally, at a concentration of 16.5 mass%
NaBr the critical behaviour becomes almost perfectly mean-field-like. Figure 2 demonstrates
the decrease of the crossover temperature τx with increase of the salt concentration and a
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Figure 3. Comparison between the rescaled coexistence curves of dioxane–water–CuSo4 and
polystyrene–methylcyclohexane. Solid squares are experimental data for dioxane–water–CuSO4
[31] and open diamonds are experimental data [18] for the polymer with the highest molecular
weight (7.2 × 105). The solid curve represents the crossover predicted for the salt solution [16].
The dashed curve represents the crossover to tricriticality for polymer solutions [15].

divergence of the length ξD at the point where τx vanishes. It was assumed that the divergence
of ξD is associated with the proximity to a multicritical point which emerges on the critical
line presumably as a result of strong interaction between critical fluctuations and ions. It was
speculated that this point may be identified with a so-called Lifshitz tricritical point in which
two liquid phases coexist with a charge-density-wave phase [30] (see also [21, 23]).

It should be noted that the tricritical value of the susceptibility exponent γ is the same
as the mean-field value γ = 1, so the crossover behaviour of the susceptibility alone does
not allow us to distinguish between mean-field criticality and mean-field tricriticality. This is
why the analysis of the crossover behaviour of the coexistence curve, similar to that presented
for polymer solutions, plays a crucial role in revealing the possibility of tricriticality. In
figure 3 the rescaled data for the coexistence curves of the polystyrene– (molecular weight
�7.2×105) methylcyclohexane system obtained by Dobashi et al [18] and of dioxane–water–
(saturated) CuSO4 obtained by Japas [31] are presented. The rescaling parameters used, as
suggested by Izumi and Miyake [32], are ϕ0 = φc � 0.04 (critical volume fraction) and
τ0 = (� − Tc)/Tc � 0.027 for the polymer solution, while they are ϕ0 � 0.03 and τ0 � 0.18
for the aqueous salt solution. The parameters for the aqueous solution were adjusted in such a
way that the critical Ising limit (τ/τ0 � 1) became the same as for the polymer solution. The
similarity between the two curves is remarkable. Far away from the critical point (τ/τ0 � 1),
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the coexistence curves transform into the angle-like shape with the critical exponent β → 1
corresponding to the tricritical limit. This result supports the assumption that the crossover to
mean-field tricriticality may be a common phenomenon in concentrated aqueous salt solutions
with lower critical points. Ions may stabilize the fluctuations of concentration and result in
charge ordering and eventually in appearance of a multicritical point. The observed crossover
in some ‘coulombic’ systems, possibly, may also be caused by coupling between coulombic
and solvophobic interactions and by formation of a supramolecular structure. Evidence of a
coarse structure at a scale of ∼2 nm as well as sharp crossover to mean-field behaviour has
been reported by Chieux [33] and Chieux and Sienko [5] for metal–ammonia solutions. To
verify the assumption that this is a common reason for the crossover behaviour in ionic fluids,
more systematic and accurate experiments are desirable.
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